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I. INTRODUCTION

Let f: R 2 R be continuous and xocR. The orbit of X under f is defined
as the set {x: x = fn(xo), n=20,1,...}, where, for every positive integer
n, f? is the n-th iterate of f, fl = f, and fo(xo) = Xg- We shall write
Xn :=f“(x0) for & given xocR and call XpsXgs o the successors of Xq- A
pre—-orbit of a given xocR is any (finite or infinite) sequence Xgs X_1» X_gs-e
such that f(x_n) = X_(p-1) for all n for which X_n is defined. The points X_ys
x_z,...in any such sequence are called predecessors of Xg- A point g is
called critical if f(co) = ¢y, i.e., a critical point of f is a fixed point of
f. A periodic point X of period p > 1 (p a positive integer) is a point for

which the relations fp(xo) = Xgs fk(xo) z Y l 6k «<p, hold. If X is a

periodic point of period p, its orbit is denoted by (xo, xl,...,xp_l). We
shall denote the kth iterate of X under the function f® by x‘}'(’, k=0,1,--"
Thus x;: H (f‘")k(xo) = Xmk, and, in particular, x‘(')' = xﬁ = X for all

nonnegative integers k and m.

Definition. Let f: R + R be continuous and Xg ¢ R. f has a loop of order

n if Xq has & pre-orbit (xo,x__l,...,x_n) such that either

x <(x < <
0

-n < x—(n—l) < owe X o <X
or

Xq 2 X_, > X_(n-1) > e 2 X_o > X_qe

f has an infinite loop if X has an infinite pre-orbit (xo, x_l,...,x_n,...)
such that either

X0 <G..< X_n < X_(n-1) <oonX X_o < X_q
or
Xg 2eee? X _n > X_(n-1) 2040 X_o > X1
A loop of order (n - 1) is called an n-periodic loop if x, = x

0 -n’
We adopt the following concise notation: we say property P(k)
holds if f has a periodic orbit of period k. Thus P(1), L(k), L(=) mean that f
has a critical point, a periodic loop of period k, an infinite loop, respectively.
Similarly, PM(k), LN(k), L"(«) shall mean that f? has a k-periodic orbit,
k-periodic loop, an infinite loop, respectively.
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. AL
E X In this notation, Sarkovskii's theorem and our refinement read as follows. :j',-::
e \':\.
» Theorem (Sarkovskii). Let f: R ® R be continuous. Then :;
s
‘ P(3) ==> P(5) ==> P(7) ==>..=2> [
i P(2:3) ==> P(2'5) ==> P(2:7) ==>..==> 95} v
¢ P(22'3) ==> P(2 2'5) ==> P(22~7) =2)..52) f.:-' Vi
b ¢
: vee == -\. v
p23) = P2% =5 P2) = P(. . P
’ " . .
3 Theorem (SR). Let f: R @ R be continuous. Then ’ ‘,:'.__:'_'_
L] ".- '-
. L(e)...=2> L(5) ==> L(4) ==> L(3) <==> i
- P(3) ==> P(5) ==> P(7) ==>...== e
o~ 2 ' YRS
’ Lo(e)...==> 12(5) ==> 12(4) ==> 12(3) (== e
. P(2.3) ==> P(2.5) ==> P(2.7) ==>... T
. 2 2 22 22 '4"::"
-;- Lé (®)...==> L* (B) ==> L% (4) ==> L (3) <== RN
" P(22-3) ==> P(2%:5) =>P(2%.T)=o>... A0
., cerene ‘;;:M;‘
= L.z P(2Y) ==> P(2%) ==> P(2) ==> P(1). S
N A. N. Sarkovskii obtained the fundamental result which bears now his name in .-:'_::'.j::
- N
:: his seminal paper! of 1964. The purpose of this paper is to prove Theorem '_:f-:'
\.r_:.'
'5\, (SR). ::.:: .
n II. ELEMENTARY LEMMAS TN
- Y
i It follows from the definition of a periodic loop that every three-periodic SN
e, orbit is a three-periodic loop and that an (n + 1)-periodic loop implies the \":',’,'z
o existence of a loop of order n. ;5"""%
:: Lemma 2.1. If f has a critical point ¢, such that © <o <Cy f has an _:\
. infinite loop satisfying :‘_::::
‘. A__‘.-_\‘
. Cp < +oeC C_ Caenle, <oy AN
?; The same statement holds with all inequalities reversed. N
a BOAS
:. Proof. Since f(c_,)=c_, and ¢, < c_;, there exists c_gpe(c, c_z). ,_:::-‘."
o Repeating this argument establishes the lemma. F:‘.r;
. , N
: cas . [ o
2 Lemma 2.2. If f has a critical point o such that €y Ceg <y g € has ;.:‘.:\{
. .'-'_'.'\:-
' AN Sarkovskii,"Coexistence of cycles of a continuous map of a line into _,j:_
o itself,' Ukrain. Mat. Zh. 16 (1964), 61-71. R
" Y
‘ .-I~..l
; Y
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! 6 NN
. e e
S e
By BACAL
. c:~-\-:
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an infinite pre-orbit satisfying

c_1<c_3<...<co<...< c_, < c_

In particular, f2 has two infinite loops. The same statement holds with all

inequalities reversed.
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Proof. Since f(c_z):c_1 ¢ c_gand ¢y > c_g, there exists c_4¢(co, €_o), and

since f(c_3\=c_2 > C_4 > Co* there exists c_5:(c_3, co). Repeating this

argument proves the lemma.

k
Lemma 2.3. P (n) <==> P(Z'n), n, k = 1,2,

Proof. It suffices to show that P2(n) <==> P(2:'n). If (xo, Xivesos x2n-1) is a

2n-periodic orbit of f, (xg,x:f,...,xg_l ) is an n-periodic orbit of 2,

Hence P(2-n) ==> Pz(n). If (xg’xg,...,xg_l) is an n-periodic orbit of f2, we

consider the set {x

0’x1""’x2n—1}’ where Xon xﬁ = xg = X4 If Xg = X) 0

k=1,2, ... ,2n-1, then C=(x0,x1,...,x2n_1) is a 2n-periodic orbit of f.

Otherwise, there is a smallest odd k, 1 < k < 2n, such that Xg = Xpo i.e., X

is an odd-periodic point of f. But then, by Sarkovskii’s theorem, f has

periodic orbits of every even period and, therefore, in particular, a
2n-perijodic orbit. Hence Pz(n) =) P(2:n} and the proof of the lemma is

complete,

II1. PRINCIPAL RESULTS

Let C=(x0,xl,...,xn_1) be any n-periodic orbit of f. We define the subsets

+ - . - = .
ct = {xizC. Xi41 > xi}, c = {xi:C. X:41 < xi},

+ - . - - .
D™ = {xi:C. Xi40 > Xi01 > xi}, D~ = {xi:C. Xi40 < x,

The sets C* and C~ are non-empty since min C ¢ C* and max C ¢ C-. Letting

further 36 = min C* (= min C), ba = max C*, aa = min C-, and ba = max C~

(= max C), it is clear that either aa & bB < 36 £ ba or 36 < a(_) < ba < ba.

Theorem 3.1. If ag & by ¢ ap € by and D* U D~ = ¢, f has a critical point o

such that f2 has two infinite loops (dg, dg

satisfying

lodgzw--) and (C%, Cgl, ng,..."

oy 5.'\-' -
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2 2 2 _ . 2 2
_1<d__2<...<do-c0-co<...< c_

d

In particular, Lz(-) holds.
Proof. It is sufficient to assume that D* = ¢. Then, if we let ﬂ; = max D*,
we have

%
and conclude the existence of a critical point o and a predecessor c_, such
that

By < avyup ey ey

+ + + + - -
aoip°<c_1<p16b0<c0<a0‘bo.

We consider now the set E~ = {xi g C: Xi41 < c_1}. E™ is non—-empty since
a;_l e C and a; = a; < c_y- Letting ra = min E , we have

€r, <c_

+ C+ - - -
a, 1<b0<co<ao‘r0‘b0.

This shows that, since S > <, and ry < c__l, there exists a predecessor c_
such that

2

-
.

+ + -
a0<c_1<bo<c0<c_2<r0‘b0

Our construction implies that

(i) if xj¢C” and %; > c_j, then xj,1¢C

(ii) if xi:C and x; < ry then X1 > €y

+
. a .
Hence, there is an X; 6C, x> €3 such that X;41 » Tog- For otherwise we

would have b;e(c_l, ra) for all i, contradicting the fact that C is the orbit

of b; (thus b; = a; for some i > 1). We now choose 6;;:0+ such that

+ + .
60 > ¢, and 61 dr, to obtain

+ + + - + -
ao<c_1<606bo<co<c_2<r0i616b0.

But this implies that we may choose a predecessor Cq in the interval (c -7
63), and hence that o and its predecessors C_y» €_o» and €_q satisfy the
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inequality c_y < c_3 < o < € o Appeal to Lemma 2.2 completes the proof.

Theorem 3.2. If a; < a, < b; 4 ba, there exist critical points do, L of f and
two infinite loops (do. d—l’ d—2"") and (co, c_ys c_2,...) of f satisfying

d, <d <d, &¢c

1 9 < .eo 0 0 <o K € o < c_y-
In particular, L(«) holds.

Proof. We note first that there is oy ¢ C and ps ¢ C* such that

+ - - + + -
i < é < b <b
(1) 8y <&y €ay < By “by<by

.. . - -+
(ii) if X, ¢ C, then X; & ay Or X, a ﬂo
(iii) if xj ¢ C and ap < xj € by, then xj ¢ C*

(iv) if xj ¢ C and by < xj & by, then xj ¢ C .
We now show that there are predecessors c_y and € of the critical point o
- ot . . . - -.
e (ao, ﬁo) that satisfy the inequality o < € o < €y The set A = {xicC Xy
> b; and Xi4 & aa} is non-empty (otherwise p; > ﬂ; for all integers n 2 0, a

contradiction). Let rg = min A . We have ra > b; and observe that the set
+

A = {xi e C+: ﬂ; 1 X, & bz and X:41 > ra} is non-empty (since otherwise ﬁ;

will satisfy ﬂ; £ p; < o for n » 0, a contradiction). We choose any ys ¢ A"
and have
- + + + - -
ag < € < By & ¥y € by < ry & by
Hence

+ + -

Co ¢ o ¥y € b0 Cey<ry s bo,
where the existence of c_, follows from b; > ¢, and r; < cp and that of c_,
from <o < €y and yI a ra > c_l.The infinite loop (CO’C—I’C—Z"") satisfying
L < .ee X c_, < €4 follows from Lemma 2.1. An analogous procedure locates a
_o such that d_1 < d_2 < do & o,

and hence an infinite loop (dgs d_ys d_5y...) satisfying d ; <d_, < .. <dj ¢

critical point d0 and predecessors d—l’ d
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o° This completes the proof.

Theorem 3.3. If £ has a loop of order n » 3, f has two distinct n-periodic

loops. In particular, L(n) holds.

Proof. Let (xo, x_l,....x_n) be a loop of order n ® 3 of f such that
X < X_p, .o X_o < X_y-
Since there is a critical point ot (x_2, x_l), there are predecessors C_y

C_gse 1€ (n-2) such that

X < X i < c—(n-2) < x—(n-l) < oee 1 < X_o < o < X_ 1
We consider now the set

S = {yo ¢ R: Yn < Yo < c—(n—2) < v, < ...< Yp-3 < €y < Yp-2 < o < Yn-1 }.

The set S is non-empty since X_, ¢ S and open since f is continuous. Let
(ay, b,) be the component of § such that x_, ¢ (8, b,). Since C_(n-2) £S
and Yo ¢ (ao, bo) implies Yo < c—(n—2)’ we must have

0 < b0 < c—(n—2)'

We first note that 8, > —e, This is so because for every Yo ° (ao, bo) we

have Yo < Yo and Y, ® fz([c_l, c0]), which is a compact set. Thus Yo » min
2(lc_ys €ol) > ==. This implies ag & min f([c_j, c5]) > —=. Since a,, byfS
and Yo ¢ (ao, bo) implies Yo ¢ S, we conclude by the continuity of f that

n ao < c—(n—2) < al < ...« an_

<c_, <a <c

1 $82 <% <8,

and

bn = b0 < c—(n—2) < b1 <X bn-—3 <
Hence both a, and bo are n-periodic points, and since a, < bo < b1 < uee <
bn-l’ the orbits of a, and bo are distinct. This completes the proof of the

theorem.

Corollary 3.3. If f has an (n + 1)-periodic loop, n » 3, f has two distinct

n-periodic loops.

Theorem 3.4. L(®) ==> ... ==> L(4) ==> L(3) ==> P(5) ==> P(7) =5 ... ==> LZ(e).
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;; Proof. If f has an infinite loop satisfying j:'j:j
NS
s At
xo<... <x_2<x_1, -
o
the subset {x,, X ;,...,x _}, n & 3, satisfies Pt
" 0 -1 -n 3wl
Y O
)
¥ Xg < X_p < oo <X <Xy, o0
» and is, therefore, a loop of order n. By Theorem 3.3, L(n) holds. Hence j-,:'.—
'\.‘:
3 L(e) ==> L(n). By Corollary 3.3, L(n) ==> L(n-1). The implications "
o .'::.:
1 L(3) ==> P(5) ==> P(7) ==> ... follow from Sarkovskii’s theorem. Finally, to e )
- prove the implication P(2n+l) ==> Lz(-) for every n » 1, we note that if 5t
::: C-= (Xo. Xl,....xzn) is a (2n + 1)-periodic orbit, then n(C*) = n(C~), so that ‘:f{;;:
o the hypothesis of either Theorem 3.1 or Theorem 3.2 is satisfied. In the first NN
" case Lz(-) holds by Theorem 3.1. In the second case, Theorem 3.2 implies that _';-.:
& L(=) holds, and hence that L(3) holds. Now for any three-periodic orbit, the .
’::-: hypothesis of Theorem 3.1 holds trivially. Hence Lz(-) holds. This completes o
™ the proof. N
\ hENE
N k k k k+1 SR
~ Corollary 3.4. 12 (e)...==>12 (5) ==>12 (3) ==>P(2K.5) ==>P(2 ¥7) ==>...12(e),
| Proof. This follows from Theorem 3.4 and Lemma 2.3. ,'.
Proof of Theorem (SR). Theorem (SR) follows by combining Theorem 3.4, :;,":}'_
Coroll-+~y 3.4, Lemma 2.3 and Sarkovskii’s theorem. Y
- IV. REMARKS 2
-, ._:..
:f: 1. Theorem (SR) is a step in the direction of obtaining a complete \-::::}'
refinement of Sarkovskii’s theorem that takes into account the orbit types of ;‘::}::
each period n. A periodic loop is only one of the orbit types of a given
}‘:j period. That certain orbit types imply the existence of infinite loops is ,::-"l::
,.;L implicit in Theorem 3.2 and is strikingly illustrated by the example f(x) = ::fj-:::
~ ax(1 - |x|). f hes the four-periodic orbit (3,2,- -2, where a = 4.411138875 AR
‘-
"y is given by f‘f'-‘
N KN
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This orbit satisfies the conditions of Theorem 3.2 and hence guarantees the
existence of two infinite loops as well as two periodic loops of each period
n » 3 by Theorem (SR). The results of® ensure for this example merely

the existence of a three-periodic orbit.

2. The resulits in this paper offer a novel approach to detecting chaos.
Most practical methods for detecting chaos rely, either implicitly or explicitly,
on the existence of odd periodic orbits?)%:*;®* However, lemmas 2.1 and
2.2 can be used by finding only a few predecessors of a critical point. Lemma
2.2, in particular, is independent of odd periods. A notable illustration is the
example f(x) = x* - 8, for which at

1/3 1/3

s*=%[2+[3~/§§+17] —[3J§_3—17] ]

L2(=) holds, with no odd period * 1 being present.
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